Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cochrane Database Syst Rev ; 5: CD015201, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20243540

ABSTRACT

BACKGROUND: Since December 2019, the world has struggled with the COVID-19 pandemic. Even after the introduction of various vaccines, this disease still takes a considerable toll. In order to improve the optimal allocation of resources and communication of prognosis, healthcare providers and patients need an accurate understanding of factors (such as obesity) that are associated with a higher risk of adverse outcomes from the COVID-19 infection. OBJECTIVES: To evaluate obesity as an independent prognostic factor for COVID-19 severity and mortality among adult patients in whom infection with the COVID-19 virus is confirmed. SEARCH METHODS: MEDLINE, Embase, two COVID-19 reference collections, and four Chinese biomedical databases were searched up to April 2021. SELECTION CRITERIA: We included case-control, case-series, prospective and retrospective cohort studies, and secondary analyses of randomised controlled trials if they evaluated associations between obesity and COVID-19 adverse outcomes including mortality, mechanical ventilation, intensive care unit (ICU) admission, hospitalisation, severe COVID, and COVID pneumonia. Given our interest in ascertaining the independent association between obesity and these outcomes, we selected studies that adjusted for at least one factor other than obesity. Studies were evaluated for inclusion by two independent reviewers working in duplicate.  DATA COLLECTION AND ANALYSIS: Using standardised data extraction forms, we extracted relevant information from the included studies. When appropriate, we pooled the estimates of association across studies with the use of random-effects meta-analyses. The Quality in Prognostic Studies (QUIPS) tool provided the platform for assessing the risk of bias across each included study. In our main comparison, we conducted meta-analyses for each obesity class separately. We also meta-analysed unclassified obesity and obesity as a continuous variable (5 kg/m2 increase in BMI (body mass index)). We used the GRADE framework to rate our certainty in the importance of the association observed between obesity and each outcome. As obesity is closely associated with other comorbidities, we decided to prespecify the minimum adjustment set of variables including age, sex, diabetes, hypertension, and cardiovascular disease for subgroup analysis.  MAIN RESULTS: We identified 171 studies, 149 of which were included in meta-analyses.  As compared to 'normal' BMI (18.5 to 24.9 kg/m2) or patients without obesity, those with obesity classes I (BMI 30 to 35 kg/m2), and II (BMI 35 to 40 kg/m2) were not at increased odds for mortality (Class I: odds ratio [OR] 1.04, 95% confidence interval [CI] 0.94 to 1.16, high certainty (15 studies, 335,209 participants); Class II: OR 1.16, 95% CI 0.99 to 1.36, high certainty (11 studies, 317,925 participants)). However, those with class III obesity (BMI 40 kg/m2 and above) may be at increased odds for mortality (Class III: OR 1.67, 95% CI 1.39 to 2.00, low certainty, (19 studies, 354,967 participants)) compared to normal BMI or patients without obesity. For mechanical ventilation, we observed increasing odds with higher classes of obesity in comparison to normal BMI or patients without obesity (class I: OR 1.38, 95% CI 1.20 to 1.59, 10 studies, 187,895 participants, moderate certainty; class II: OR 1.67, 95% CI 1.42 to 1.96, 6 studies, 171,149 participants, high certainty; class III: OR 2.17, 95% CI 1.59 to 2.97, 12 studies, 174,520 participants, high certainty). However, we did not observe a dose-response relationship across increasing obesity classifications for ICU admission and hospitalisation. AUTHORS' CONCLUSIONS: Our findings suggest that obesity is an important independent prognostic factor in the setting of COVID-19. Consideration of obesity may inform the optimal management and allocation of limited resources in the care of COVID-19 patients.


Subject(s)
COVID-19 , Pandemics , Adult , Humans , Prospective Studies , Retrospective Studies , Risk Factors , Obesity
2.
Crit Care Med ; 49(7): 1159-1168, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1145199

ABSTRACT

OBJECTIVES: To assess the risk of coronavirus transmission to healthcare workers performing aerosol-generating procedures and the potential benefits of personal protective equipment during these procedures. DATA SOURCES: MEDLINE, EMBASE, and Cochrane CENTRAL were searched using a combination of related MeSH terms and keywords. STUDY SELECTION: Cohort studies and case controls investigating common anesthetic and critical care aerosol-generating procedures and transmission of severe acute respiratory syndrome coronavirus 1, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2 to healthcare workers were included for quantitative analysis. DATA EXTRACTION: Qualitative and quantitative data on the transmission of severe acute respiratory syndrome coronavirus 1, severe acute respiratory syndrome coronavirus 2, and Middle East respiratory syndrome coronavirus to healthcare workers via aerosol-generating procedures in anesthesia and critical care were collected independently. The Risk Of Bias In Non-randomized Studies - of Interventions tool was used to assess the risk of bias of included studies. DATA SYNTHESIS: Seventeen studies out of 2,676 yielded records were included for meta-analyses. Endotracheal intubation (odds ratio, 6.69, 95% CI, 3.81-11.72; p < 0.001), noninvasive ventilation (odds ratio, 3.65; 95% CI, 1.86-7.19; p < 0.001), and administration of nebulized medications (odds ratio, 10.03; 95% CI, 1.98-50.69; p = 0.005) were found to increase the odds of healthcare workers contracting severe acute respiratory syndrome coronavirus 1 or severe acute respiratory syndrome coronavirus 2. The use of N95 masks (odds ratio, 0.11; 95% CI, 0.03-0.39; p < 0.001), gowns (odds ratio, 0.59; 95% CI, 0.48-0.73; p < 0.001), and gloves (odds ratio, 0.39; 95% CI, 0.29-0.53; p < 0.001) were found to be significantly protective of healthcare workers from contracting severe acute respiratory syndrome coronavirus 1 or severe acute respiratory syndrome coronavirus 2. CONCLUSIONS: Specific aerosol-generating procedures are high risk for the transmission of severe acute respiratory syndrome coronavirus 1 and severe acute respiratory syndrome coronavirus 2 from patients to healthcare workers. Personal protective equipment reduce the odds of contracting severe acute respiratory syndrome coronavirus 1 and severe acute respiratory syndrome coronavirus 2.


Subject(s)
Aerosols , Coronavirus Infections/transmission , Critical Care , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Humans , Observational Studies as Topic , Odds Ratio , Personal Protective Equipment , Protective Factors , Risk Factors
3.
World J Urol ; 39(9): 3127-3138, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-381965

ABSTRACT

PURPOSE AND OBJECTIVE: We performed a systematic review on COVID-19 and its potential urological manifestations. METHODS: A literature search was performed using combination of keywords (MeSH terms and free text words) relating to COVID-19, urology, faeces and stool on multiple databases. Primary outcomes were the urological manifestations of COVID-19, and SARS-CoV-2 viral RNA detection in urine and stool samples. Meta-analyses were performed when there were two or more studies reporting on the same outcome. Special considerations in urological conditions that were relevant in the pandemic of COVID-19 were reported in a narrative manner. RESULTS: There were a total of 21 studies with 3714 COVID-19 patients, and urinary symptoms were absent in all of them. In patients with COVID-19, 7.58% (95% CI 3.30-13.54%) developed acute kidney injury with a mortality rate of 93.27% (95% CI 81.46-100%) amongst them. 5.74% (95% CI 2.88-9.44%) of COVID-19 patients had positive viral RNA in urine samples, but the duration of viral shedding in urine was unknown. 65.82% (95% CI 45.71-83.51%) of COVID-19 patients had positive viral RNA in stool samples, which were detected from 2 to 47 days from symptom onset. 31.6% of renal transplant recipients with COVID-19 required non-invasive ventilation, and the overall mortality rate was 15.4%. CONCLUSIONS: Acute kidney injury leading to mortality is common amongst COVID-19 patients, likely as a result of direct viral toxicity. Viral RNA positivity was detected in both urine and stool samples, so precautions are needed when we perform transurethral or transrectal procedures.


Subject(s)
Acute Kidney Injury , COVID-19 , SARS-CoV-2/isolation & purification , Urologic Diseases , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/mortality , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Humans , RNA, Viral/urine , Urologic Diseases/classification , Urologic Diseases/therapy , Urologic Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL